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Abstract. We compute at the one-loop order the β-functions for a renormalisable non-commutative analog
of the Gross–Neveu model defined on the Moyal plane. The calculation is performed within the so called
x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any
number of colors. The β-function for the non-commutative counterpart of the Thirring model is found to be
non vanishing.

1 Introduction

In the past few years, some activity has been focused on
the study of various classes of field theories defined on
Moyal spaces [1, 2].1 These provide prototypes of non-
commutative field theories which are interesting in them-
selves since they involve some salient features of non-
commutative geometry [4, 5]. The interest in the study
of these field theories was further increased by the claim
that somehow similar non-commutative field theories seem
to emerge rather naturally from (some limiting regime
of) string theory and matrix theory in magnetic back-
grounds [6–9]. Recall that in non-commutative geometry,
the commutative algebras of functions defined on dif-
ferentiable manifolds (roughly the coordinates spaces)
are replaced by associative but non-commutative alge-
bras further interpreted as algebras of functions on “non-
commutative spaces”. Within this later algebraic frame-
work, natural non-commutative analogs of the main geo-
metrical objects usually involved in field theories can be
algebraically defined, such as for instance connections, cur-
vatures, vector bundles, so that the construction of various
non-commutative analogs of fields theories can be under-
taken. The starting relevant configuration spaces for the
non-commutative field theories are modules over various
forms of associative algebra, which are naturally viewed
as a non-commutative analogs of vector bundles. One ex-
ample of associative algebra among many is provided by
the associative Moyal algebras [10, 11], therefore play-
ing the role of “non-commutative Moyal spaces”. At this
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1 For an recent analysis of non-commutative field theories on
projective modules, see [3]

level, one technical remark is in order. Throughout this
paper, we will consider only RDθ algebras, i.e., the non-
commutative counterpart of the Euclidean RD spaces. For
studies related to non-commutative tori, see e.g., [1–3] and
references therein. Besides, the ensuing discussion refers to
non-commutative field theories defined on free modules.
The simplest non-commutative generalizations on

Moyal spaces of the usual scalar theories that were first in-
vestigated were shown to suffer from the so called UV/IR
mixing [12–14], a phenomenon that makes the renormal-
isability very unlikely. Recall that UV/IR mixing results
from the existence of potentially dangerous non-planar
diagrams, which, albeit UV finite, become singular at
exceptional (low) external momenta. This triggers the
occurrence of UV divergences in higher order diagrams
in which they are involved as subdiagrams. This signals
that UV and IR scales are related in a non trivial way
which should in principle invalidate a Wilson-type renor-
malisation scheme [15, 16]. An appealing solution to the
UV/IR mixing has been recently proposed by Grosse
and Wulkenhaar [17, 18] within the non-commutative ϕ4

model on the four-dimensional Moyal space where ϕ is
real-valued. They showed that the UV/IR mixing can be
suppressed by supplementing the initial action with a har-
monic oscillator quadratic term leading to a renormalis-
able non-commutative quantum field theory. The initial
proof [17, 18] was performed within the matrix-base for-
malism, roughly a basis for the (Schwarz class) functions
for which the associative product of the Moyal algebra
is a simple matrix product. This cumbersome proof was
simplified through a reformulation into the (position) x-
space formalism in [19] which exhibits some advantages
compared to the matrix-base formulation. For instance,
the propagator in x-space can be explicitly computed (as
a Mehler kernel [20, 21]) and actually used in calculations.



736 A. Lakhoua et al.: One-loop beta functions for the orientable non-commutative Gross–Neveu model

Besides, it makes the comparison of the renormalisation
group for non-commutative theories and their commuta-
tive counterpart easier.
At the present time, another renormalisable non-

commutative scalar quantum field theory on Moyal spaces
has been identified. This is a (complex-valued) scalar
theory studied in [19] which can be viewed as a modi-
fied version of the LSZ model [22, 23] (the scalar theory
in [24] is super renormalisable). Note that interesting
solvable non-commutative scalar field theories have also
been considered in [25–27]. As far as the fermionic the-
ories are concerned, a non-commutative version on the
Moyal plane of the Gross–Neveu model [28–30], called
the orientable non-commutative Gross–Neveu model, has
been recently considered and shown to be renormalis-
able to all orders [31, 32]. It is worth mentioning that
this non-commutative field theory still exhibits some
UV/IR mixing, even in the presence of the fermionic ver-
sion of the harmonic oscillator quadratic term introduced
in [17, 18], which however does not prevent the theory
to be renormalisable. Note that in [33, 34] the large N
limit of the non-commutative Gross–Neveu model, with
however a restricted interaction, has been studied; renor-
malisability is shown at this limit together with asymp-
totic freedom. One should keep in mind that the fact
that the orientable Gross–Neveu model is renormalis-
able, although it involves some remaining UV/IR mix-
ing [31] indicates that further investigations are needed
to actually clarify the effective role of the various gen-
eralizations of the above mentioned harmonic oscilla-
tor term and of the related covariance of the consid-
ered theory under the Langmann–Szabo duality [35] and
their impact in the control of the UV/IR mixing and
renormalisability.
Despite this remaining uncertainty, coupling constant

flows and β-functions can be studied in the available renor-
malisable non-commutative field theories. The β-function
for the coupling constant of the non-commutative (real-
valued) ϕ4 model on the 4-dimensional Moyal space has
been computed at the one-loop order in [36, 37]. It ex-
hibits a bounded flow, finite fixed point and vanishes when
the parameter affecting the harmonic oscillator quadratic
term, says Ω, is equal to unity, which corresponds to the
(self-dual) point in the parameter space where the field the-
ory is invariant under the Langmann–Szabo duality [35].
This latter result has been proven very recently to be valid
to all orders in [38]. In the present paper, we compute at the
one-loop order the β-functions of the coupling constants
involved in the renormalisable non-commutative version
on R2θ of the Gross–Neveu model considered in [31]. Re-
call that the (commutative) Gross–Neveu model exhibits
asymptotic freedom together with mass generation phe-
nomenon [28–30]. In Sect. 2, we recall the principal fea-
tures of the renormalisable non-commutative version of
the Gross–Neveu model and collect the various ingredi-
ents relevant for the calculation. The Sect. 3 is devoted to
the one-loop computation of the relevant correlation func-
tions. The analysis is carried out within the x-space for-
malism which appears to be well adapted for the relevant
calculations. In Sect. 4, we present the expressions for the

β-functions, collect and discuss the main results and finally
draw conclusions.

2 The orientable non-commutative
Gross–Neveu model

In this section we recall the main features of the relevant
action [31, 32], fix the conventions and collect the use-
ful material that will be needed throughout this paper.
Let R2θ denotes the “Moyal plane” [10, 11], which can be
viewed in the following as a unital involutive associative
algebra over C generated by the coordinate functions on
R
2 such that [xµ, xν ]� = iΘ

µν with [a, b]� = a� b− b �a for
any (a, b) ∈ R2θ. Here, “�” denotes the associative Moyal–
Groenwald product on R2θ induced by Θ, an invertible
constant skew-symmetric matrix that can be chosen to be
Θ = θS, S =

(
0 −1
1 0

)
where the parameter θ has mass di-

mension −2. The Moyal product can be represented as

(a� b)(x) =
1

(2π)2

∫
d2yd2k a

(
x+
1

2
Θ ·k

)
b(x+y)eik·y

(1)

where (Θ · k)µ = Θµνkν . We also define X ·Θ−1 ·Y =
XµΘ−1µν Y

ν . For moremathematical details, see e.g., [10, 11].
The action for the orientable non-commutative Gross–

Neveu model on R2θ [31] can be written as

S =

∫
d2x

[

ψ̄ (−i �∂+Ω � x̃+m+κγ5)ψ

−
3∑

A=1

gA

4
(J A �JA)(x)

]

(2a)

J A = ψ̄ �ΓAψ , Γ1 = 1I , Γ2 = γ
µ , Γ3 = γ5 ,

(2b)

where �a= aµγµ, x̃ = 2Θ−1 ·x and a summation over the
Lorentz indices µ is understood in the interaction term
involving J2, J2 �J2 =

∑
µ(ψ̄ � γµψ)� (ψ̄ � γ

µψ). The Clif-
ford algebra for the 2D anti-Hermitian gamma matri-
ces satisfy {γµ, γν} = −2δµν and γ5 = iγ0γ1. The field
ψ denotes a 2N -component spinor field where N is the
number of colors. The parameters Ω (to be discussed in
a while), 0 ≤ Ω < 1, and the gA’s are dimensionless. In
(2a), the termΩψ̄x̃ψ can be viewed as the Fermionic coun-
terpart of the harmonic oscillator term first introduced
in [17, 18]. Here, two comments are in order. First, notice
that the minus sign affecting the four-Fermion interaction
term in (2a) is a mere generalization of the interaction
term in the commutative Gross–Neveu model [28–30] for
which asymptotic freedom is obtained. Next, the fact that
the model defined in (2a) is called “orientable” comes
from the present choice for the interactions. Recall that
within the present non-commutative framework, six in-
dependent four-fermion interactions can in principle be
constructed. The three interaction terms in which ψ and
ψ̄ alternate, namely

∑
a,b ψ̄a �ψb � ψ̄a �ψb,

∑
a,b ψ̄a �ψb �
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ψ̄b �ψa,
∑
a,b ψ̄a �ψa � ψ̄b �ψb (the sum runs over color

indices a, b), gives rise after suitable Fierz transform-
ations to the interaction term in (2a) from which the
diagrams occurring in the loop-wise expansion can be
given an orientation [31]. This explains why (2a) is called
“orientable”. Three other terms with adjacent ψ and ψ̄
could in principle be written, namely

∑
a,b ψ̄a � ψ̄b �ψa �ψb,∑

a,b ψ̄a � ψ̄b �ψb �ψa,
∑
a,b ψ̄a � ψ̄a �ψb �ψb. Such interac-

tion terms would result in a field theory with diagrams
that cannot be orientated (in addition to the orientable
one) [31]. Although the proper interpretation of the non-
orientable interactions is not clear within the present
algebraic framework, the corresponding field theory is in-
teresting in itself. Its detailed study has been undertaken
in [39].
The action (2a) has been shown to be renormalisable to

all orders in [31]. Notice that the proof relies rather heav-
ily on the orientability of the diagrams. In the massive case
(m �= 0), the term κψ̄γ5ψ in (2a), even not present at the
classical level would be generated by higher order correc-
tions (at the two-loop order) [31]. The Feynman graphs can
be computed from the propagator and interaction vertex
derived from (2a). In the following, we will work within
the x-space formalism [19] which proves convenient in the
present analysis. The propagator in the x-space C(x, y) =
(−i �∂+Ω � x̃+m)−1(x, y) can be written as [32] 2

C(x, y) =

∫ ∞

0

dtC(t;x, y) ;

C(t;x, y) = C̄(t; y−x) exp (iΩx∧y) , (3a)

where x∧y = 2x ·Θ−1 ·y and

C̄(t;u) =
Ω

πθ

e−m
2t

sinh
(
2Ω̃t
)e−

Ω̃
2 coth(2Ω̃t)u

2

×
(
iΩ̃ coth(2Ω̃t) �u+Ω � ũ+m

)
e−2γ5Ω̃t,

(3b)

with Ω̃ = 2Ωθ . Note that the following formula

e−αγ5 = cosh (α) 1I− sinh(α)γ5 (4)

holds for any real parameter α. The propagator C is diag-
onal in its color indices. The interaction vertices can be
read off from the RHS of
∫
d2x (ψ̄ �ΓAψ� ψ̄ �ΓAψ)

=
1

π2θ2

∫ 4∏

i=1

d2xi ψ̄(x1)ΓAψ(x2)ψ̄(x3)ΓAψ(x4)

× δ (x1−x2+x3−x4) e
−i
∑
i<j(−1)

i+j+1xi∧xj .

(5a)

2 See [21]

We will denote the vertex kernel as

V (x1, x2, x3, x4)

= δ (x1−x2+x3−x4) e
−i
∑
i<j(−1)

i+j+1xi∧xj .
(5b)

The graphical representation of the vertex is depicted on
the Fig. 1. The non-locality of the interaction is conve-
niently represented by the rhombus appearing on Fig. 1
whose vertices correspond to the xi’s occurring in (5). It is
useful to represent the alternate signs in the delta function
of (5) by plus- and minus-signs, as depicted on the figure.
By convention, a plus-sign (resp. minus-sign) corresponds
to an incoming field ψ̄ (resp. outgoing field ψ). This per-
mits one to define an orientation on the diagrams obtained
from the loop expansion. Notice that external lines are not
drawn explicitly as we will deal essentially with amputated
Green functions.
In the computation of the relevant diagrams, recall that

a factor

3∑

A=1

gA

4π2θ2

∫
D(x) ; D(x) =

4∏

i=1

d2xi V (x1, x2, x3, x4)

(6)

must appear in the amplitude for each involved (square)
vertex. Besides, the contraction between ψ and ψ̄ used in
the computation of the amplitudes is defined by C(x, y) =∫
Dψ̄Dψe−Sfreeψ(x)ψ̄(y). Furthermore, the following for-
mulas among the γ matrices will be useful

γµγν =−δµν1I− iεµνγ5
γµγνγρ = (δµνδρσ− δ

µρδνσ+ δ
νρδµσ) γ

σ (7a)

γ5γ
µ =−iεµνγ

ν

γ5γ
µγν =−iεµν1I− δµνγ5 (7b)

Tr (γµγν) =−2δµν

Tr (γµγνγργσ) = 2 (δµνδρσ− δµρδνσ+ δµσδνρ)
(7c)

Tr (γ5γ
µ) = 0

Tr (γ5γ
µγν) =−2iεµν (7d)

Tr (γ5γ
µγνγργσ) = 2i (δµνερσ− δµρενσ+ δµσενρ

+ δνρεµσ− δνσεµρ+ δρσεµν) (7e)

where 1I is the identity in the Clifford algebra while the
trace of an odd number of γ’s vanishes. In (7), the Levi–

Fig. 1. Graphical representation for the vertex in the x-space,
obtained from (5). The plus-sign (resp. minus-sign) appearing
in the rhombus corresponds to incoming (resp. outgoing) exter-
nal line associated with ψ̄ (resp. ψ)
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Civita symbol εµν satisfies ε01 =+1. We are now in pos-
ition to evaluate the one-loop contributions to the two- and
four-point functions.

3 Calculation of the correlation functions

3.1 The two-point function

Within the orientable non-commutative Gross–Neveu
model, the two-point function receives contributions at the
one-loop level from tadpole diagrams. There are obviously
two types of tadpole diagrams depending whether the con-
traction between ψ and ψ̄ is performed within one among
the two operators J defined in (2b) that forms the whole
vertex or the contraction takes place between the two oper-
ators J . Typical tadpoles are depicted on the Figs. 2 and 3.
The diagram on Fig. 2 corresponds to a tadpole of the first
type mentioned above. The corresponding amputated am-
plitude is given by

A1 =−
3∑

A=1

gA

4π2θ2

∫
D(y)ψ̄(y1)Γ

Aψ(y2)Tr(C(y4, y3)Γ
A) ,

(8)

where the trace runs over spinor and color indices. It can
be easily realized that the contribution from the other tad-
pole diagram, obtained through the substitution y1↔ y3,
y2↔ y4 is equal to the one given in (8) which reflects the in-
variance of the phase factor in the vertex kernel (5b) under

Fig. 2. A typical tadpole obtained from the contraction be-
tween Fermion fields occurring within one operator J . The
other tadpole of the same type is obtained through the sub-
stitution y1↔ y3, y2↔ y4. Both diagrams give rise to equal
contributions to the amputated two-point Green function

Fig. 3. A tadpole obtained from the contraction between
Fermion fields taking place between two operators J , the other
one being obtained through y1↔ y3, y2↔ y4

cyclic permutation. Therefore, both diagrams are taken
into account simply by multiplying the RHS of (8) by 2.
In the same way, the Fig. 3 represents a typical tadpole

of the second type mentioned above. The corresponding
amplitude can be written as

A2 =
3∑

A=1

gA

4π2θ2

∫
D(y)ψ̄(y1)Γ

AC(y2, y3)Γ
Aψ(y4) ,

(9)

while the amplitude stemming from the other tadpole dia-
gram obtained from y1↔ y3, y2↔ y4 is equal to the RHS
of (9) so that again taking into account both diagrams
amounts to multiply the RHS of (9) by a factor 2.
By further making use of (3), (5) and the useful identity

∫
d2x

(2π)2
eiαx∧z =

θ2

4α2
δ(z) , (10)

it can be easily seen that two among the four integrals over
the space variables yi’s can be explicitly performed thanks
to delta functions so that (8) and (9) can be reexpressed as

A1 =−
3∑

A=1

gA

4(1+Ω)2

∫
d2y1d

2y2δ(y1−y2)

×

∫ ∞

0

dtψ̄(y1)Γ
Aψ(y2)Tr

(
C̄(t; y1−y2)Γ

A
)
,

(11)

A2 =
3∑

A=1

gA

4(1−Ω)2

∫
d2y1d

2y4δ(y1−y4)

×

∫ ∞

0

dtψ̄(y1)Γ
AC̄ (t; y1−y4)Γ

Aψ(y4) , (12)

which, upon integrating over the remaining delta func-
tions, reduce respectively to

A1 =−
3∑

A=1

gA

4(1+Ω)2

∫
d2ydtψ̄(y)ΓAψ(y)

×Tr
(
C̄(t; 0)ΓA

)
, (13)

A2 =
3∑

A=1

gA

4(1−Ω)2

∫
d2ydtψ̄(y)ΓAC̄(t; 0)ΓAψ(y) .

(14)

Relation (13) combined with (3b) yields

A1 =−
3∑

A=1

mΩgA

4πθ(1+Ω)2

∫
d2ydtψ̄(y)ΓAψ(y)e−tm

2

×
(
coth(2Ω̃t)Tr(ΓA)−Tr

(
γ5Γ

A
))
. (15)

Then, by further inspecting the remaining integrals over
the Schwinger parameter t, it is easy to see that the sec-
ond term in (15) gives rise to a finite contribution and can
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therefore be ignored in the present analysis while the first
term is UV logarithmically divergent as it can be realized
from

I1
def
=

∫ ∞

0

dt e−m
2t coth(2Ω̃t) = lim

ε→0

(
−
θ

4Ω
log ε

)
+ . . .

(16)

where the ellipses denote finite contributions. Finally, since
Tr(ΓA) is non vanishing only when ΓA = 1I, (15) yields

A1 =−
mΩg1

2πθ(1+Ω)2
I1

∫
d2y ψ̄(y)ψ(y)+ . . . (17)

where again the ellipses denote finite contributions. In
a similar way, we find that the logarithmically diverging
part of (14) can be written as

A2 =
mΩ

4πθ(1−Ω)2
I1 (g1−2g2+ g3)

∫
d2y ψ̄(y)ψ(y)+ . . .

(18)

Notice that the finite parts of (17) and (18) both involve
a term equal to δµi

∫
dy ψ̄(y)γ5ψ(y), i = 1, 2 with δµ1 =

Ωg3
2πmθ(1+Ω)2

and δµ2 =−
Ω(g1+2g2+g3)

4πmθ(1−Ω)2
.

3.2 The four-point function

The whole set of diagrams contributing to the 4-point func-
tion can be conveniently determined by finding all the pos-
sible ways to draw two contractions among the spinor fields
involved in the correlation function

∑

A,B

gAgB

16π4θ4

∫
D(y)D(z)

〈
0
∣
∣ψ̄(y1)ΓAψ(y2)ψ̄(y3)

× ΓAψ(y4)ψ̄(z1)Γ
Bψ(z2)ψ̄(z3)Γ

Bψ(z4)
∣
∣0
〉
, (19)

Fig. 4. A UV logarithmically divergent planar diagram con-
tributing to the β-functions, related to the amplitude (21)

Fig. 5. The other one-loop planar diagram contributing to the
β-functions, related to the amplitude (22)

while forbidding the graphs involving vacuum–vacuum
subdiagrams. By fixing the first contraction to occur be-
tween ψ̄(y1) and ψ(z2), one easily finds that the remaining
contraction can be built from 5 different ways in (19)
generating 5 different diagrams. These diagrams can be
classified into two different types [17, 18] among which only
the planar regular diagrams [19], plagued with UV loga-
rithmic divergences, are relevant for the computation of
the β-functions [31]. These diagrams are depicted on the
Figs. 4 and 5. At this level, one comment is in order. Recall
that the power-counting of a non-commutative field theory
depends on the topology of its Feynman diagrams. These
ones may be equivalently represented by ribbon diagrams.
For example, the graph of the Fig. 6 corresponds also to the
Fig. 7. From the ribbon representation, one can easily com-
pute the genus g (through the Euler characteristic) and the
number of broken faces B (defined as the number of faces
to which external legs belong). For the non-commutative
Φ4 theory [17, 18], the superficial degree of convergence
is

ω =N −4+8g+4(B−1) (20)

with N the number of external legs. From (20), one in-
fers that the only divergent diagrams have g = 0 and B = 1
(the planar regular ones) which are therefore the dia-
grams relevant for the calculation of the β functions. In the
Gross–Neveu case [31], the power-counting is slightly more
complicated but the same conclusion holds.
The amputated amplitudes corresponding to the Figs. 4

and 5 are given, respectively, by

B1 =−
∑

A,B

gAgB

16π4θ4

∫
D(y)D(z)

×Tr
(
C(z2, y1)Γ

AC(y2, z1)Γ
B
)
ψ̄(y3)

×ΓAψ(y4)ψ̄(z3)Γ
Bψ(z4), (21)

B2 =
∑

A,B

gAgB

16π4θ4

∫
D(y)D(z) ψ̄(y3)Γ

AC(y4, z3)

×ΓBψ(z4)ψ̄(z1)Γ
BC(z2, y1)Γ

Aψ(y2) . (22)

The other type of one-loop diagrams, namely the
broken-face diagrams, are UV finite [17, 18, 31] and can,
therefore, be ignored in the present analysis. For instance,
one obtains the broken-face diagramdepicted on the Fig. 6.

Fig. 6. The broken-face diagram corresponding to the ampu-
tated amplitude (23)
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Fig. 7. Ribbon diagram corresponding to the amputated am-
plitude (23), which is equivalent to the broken-face diagram
depicted on the Fig. 6

Its corresponding amputated amplitude is given by

BBF =
∑

A,B

gAgB

16π4θ4

∫
D(y)D(z) ψ̄(z1)Γ

BC(z2, y1)

×ΓAψ(y2)ψ̄(z3)Γ
BC(z4, y3)Γ

Aψ(y4) (23)

and can be explicitly verified to be UV finite.
We now extract the potentially diverging part of (21)

relevant for the computation of the β-functions. First, in-
tegrating over y2 and z2 and making use of (3a) and the
relation (10), we find that (21) can be cast into the form

B1 =

∫
d2x1d

2x2d
2x3d

2x4F1(x1, x2;x3, x4) (24a)

with

F1 =−
∑

A,B

gAgB

16π2θ2(1+Ω)2
δ(Y1+Z1)e

−i(x1∧x2+x3∧x4)

× ψ̄(x1)Γ
Aψ(x2)ψ̄(x3)Γ

Bψ(x4)

×

∫ ∞

0

dt1dt2

∫
d2u Tr

(
C̄(t1;u+Z1)

× ΓAC̄(t2;Y1−u)Γ
B
)
e
i
2 (1−Ω)u∧(Y1−Z1) (24b)

where we have defined Y1 = x1−x2 and Z1 = x3−x4.
Then, by further making use of the properties for the traces
of products of γ matrices given in (7) combined with (3b)
and (4), we find that (24b) can be rewritten as

F1 =−
∑

A,B

gAgBΩ
2Ω̃2

16π4θ4(1+Ω)2
δ(Y1+Z1)e

−i(x1∧x2+x3∧x4)

× ψ̄(x1)Γ
Aψ(x2)ψ̄(x3)Γ

Bψ(x4)

×

∫
dt1dt2d

2Xe−m
2(t1+t2)(c1c2)

2

× e−
Ω̃
2 (c1+c2)X

2− i2 (1−Ω)X∧(Y1−Z1)Tr
(
�XΓA �XΓB

)

+ . . . (25)

in which ci = coth(2Ω̃ti), i= 1, 2 and the ellipses denote fi-
nite contributions. Finally, from the explicit computation
of the trace in (25), one easily infers that the only non van-
ishing contributions are those where ΓA and ΓB are equal

to each other, leading to (X2 =XµX
µ)

B1 =−
NΩ2Ω̃2

8π2θ2(1+Ω)2

∫
dxdX V(X)

×
(
g21X

2ψ̄ �ψ � ψ̄ �ψ− g23X
2ψ̄ � γ5ψ � ψ̄ � γ5ψ

− g22(2X
µXµ−X

2)ψ̄ � γµψ� ψ̄ �γµψ
)
(x)+ . . . ,

(26a)

V(X) =

∫ ∞

0

dt1dt2 e
−m2(t1+t2)(c1c2)

2e−
Ω̃
2 (c1+c2)X

2
.

(26b)

A similar analysis applied to (22) permits one to extract
the potentially diverging part relevant for the calculation
of the β-functions. It takes the form

B2 =

∫
d2x1d

2x2d
2x3d

2x4 F2(x1, x2;x3, x4) (27a)

with

F2 =
∑

A,B

gAgBΩ
2Ω̃2

16π4θ4(1−Ω)2
e−i(x4∧x1+x2∧x3)δ(Y2+Z2)

×

∫
d2X V(X)ψ̄(x1)Γ

A �XΓBψ(x2)

× (ψ̄(x3)Γ
B �XΓAψ(x4))

+ . . . (27b)

in which Y2 = x4−x1, Z2 = x2−x3, V(X) is given by (26b)
and the ellipses denote finite contributions. By repeated
use of (7a) and (7b), the amplitude (27b) can be cast into
the form

B2 =
Ω2Ω̃2

16π2θ2(1−Ω)2

∫
dxdX V(X)

×
[(
g21+ g

2
3

)
(Xµ)2ψ̄ � γµψ � ψ̄ �γµψ

+2g22(X
µ)2ψ̄ � γνψ� ψ̄ �γνψ

+2(g1g2+ g2g3)(X
µ)2

×
(
ψ̄ �ψ� ψ̄ �ψ+ ψ̄ � γ5ψ� ψ̄ �γ5ψ

)

+ 2g1g3(X
µ)2ψ̄ � γµ+1ψ� ψ̄ �γµ+1ψ

]
(x)+ . . .

(28)

where in the last line, µ ∈ Z2.
It appears that B1 and B2 are plagued with UV loga-

rithmic divergences as proven in [31]. This can be easily
verified by performing the integral overX in (26a) and (28)
and then studying the behaviour of the resulting expres-
sions when the Schwinger parameters become close to zero.
Then using

∫ ∞

0

dt1dt2 e
−(t1+t2)m

2
(
coth(αt1) coth(αt2)

coth(αt1)+coth(αt2)

)2

= lim
ε→0+

− log ε

α2
+O(1), (29)
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the diverging parts of (26a) and (28) are thus, respectively,
given by

Bdiv1 = lim
ε→0
−

N log ε

32π(1+Ω)2

×

∫
dx
(
g21ψ̄ �ψ � ψ̄ �ψ− g

2
3ψ̄ � γ5ψ � ψ̄ � γ5ψ

)
(x) ,

(30)

Bdiv2 = lim
ε→0
−

log ε

64π(1−Ω)2

×

∫
dx
([
(g1+ g3)

2+4g22
]
ψ̄ � γµψ� ψ̄ �γµψ

+4(g1g2+ g2g3)

×
(
ψ̄ �ψ � ψ̄ �ψ+ ψ̄ � γ5ψ � ψ̄ � γ5ψ

))
(x) . (31)

4 The β functions

After having obtained the divergent parts of the relevant
graphs at one loop, we are now in position to write down
the beta functions. First of all note that the two-point
function only enter the beta functions through the wave-
function renormalisation. At one-loop order, only the tad-
poles (17) and (18) contribute to the two-point function. It
turns out that their divergent parts are exactly local and
then only renormalise the mass. Then the beta functions
at one-loop order are only computed from the four-point
graphs. Notice that, as a byproduct, Ω is not renormalised
to the one-loop order.
The interaction part of the effective action is

Γ inteff =

∫
g1

4
ψ̄ �ψ � ψ̄ �ψ+

g2

4
ψ̄ � γµψ � ψ̄ � γµψ

+
g3

4
ψ̄ � γ5ψ � ψ̄ � γ5ψ+

4

2!

(
−

N log ε

32π(1+Ω)2

×

∫
g21ψ̄ �ψ� ψ̄ �ψ− g

2
3ψ̄ � γ5ψ � ψ̄ �γ5ψ

−
log ε

64π(1−Ω)2

∫ [
(g1+ g3)

2+4g22
]
ψ̄ � γµψ� ψ̄ �γµψ

+ 4(g1g2+ g2g3)
(
ψ̄ �ψ � ψ̄ �ψ+ ψ̄ � γ5ψ � ψ̄ � γ5ψ

)
)
.

(32)

Table 1. Comparison between the Gross–Neveu and Thirring
models and their non-commutative counterparts

Commutative Non-commutative
Gross–Neveu Thirring Gross–Neveu Thirring

N(ψ̄ψ)2 0 N(ψ̄ψ)2 0

−(ψ̄ψ)2 0 finite finite

0 0 (ψ̄γµψ)2 (ψ̄γµψ)2

stable stable unstable stable
asympt. free asympt. free

β = 0 at N = 1 β > 0

On the second line of (32), the factor 1/2! comes from the
expansion of the exponential of Sint and the factor 4 is just
the number of Wick contractions leading to the considered
graphs. By definition,

βi =
d

d(− log ε)
gi({gjR}) (33a)

where gjR stands for the renormalized constants. This gives

β1 =−
g21R

4π(1+Ω)2
−

1

2π(1−Ω)2
(g1Rg2R+ g2Rg3R)

(33b)

β2 =−
g22R

2π(1−Ω)2
−

1

8π(1−Ω)2
(g1R+ g3R)

2 (33c)

β3 =
g23R

4π(1+Ω)2
−

1

2π(1−Ω)2
(g1Rg2R+ g2Rg3R).

(33d)

In [31], it has been proven that the action (2a) is renor-
malisable to all orders. From our one-loop computation,
it seems that the stable manifold of parameters may well
be reduced. Indeed from the expressions for the beta func-
tions, it is clear that at one-loop, if g1 = g3 = 0 then the
interaction g2ψ̄ �γ

µψ � ψ̄ �γµψ is stable. An other possibil-
ity is g2 = 0= g1+g3, which is also stable. These two points
are also true in the commutative case [28–30].
The Table 1 summaries similarities and differences

between the commutative and non-commutative Gross–
Neveu and Thirring models. Remind that the commutative
Gross–Neveu and Thirring models are given respectively
by the following Lagrangians:

LGN =

∫
ψ̄( �p+m)ψ−λψ̄ψψ̄ψ (34a)

LTh =

∫
ψ̄( �p+m)ψ−λψ̄γµψψ̄γµψ (34b)

In Table 1, the trajectories in the graphs correspond to con-
tractions of spinor and color indices. For example the first
and third graphs in the non-commutative case correspond,

Fig. 8. UV Asymptotic Freedom for the model (2a) when g1 =
g2 = g3. The vertical (resp. horizontal) axis represents g1 (resp.
− log ε). Notice that the UV region corresponds to the leftmost
values. The units are arbitrary
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respectively, to Figs. 4 and 5. On R2 both the Gross–Neveu
and the Thirring models are stable (which means that no
new interaction vertex is created by radiative corrections).
On R2θ the Gross–Neveu is not stable anymore. The third
graph generates indeed a vertex of the form ψ̄ � γµψ � ψ̄ �
γµψ. This was not the case on R2 thanks to a compen-
sation between two graphs. On R2θ one of them is now
finite (it has two broken faces). Note that the same phe-
nomenon occurs for the second graph which becomes finite
on R2θ. A well-known fact about the commutative Gross–
Neveu and Thirring model is their asymptotic freedom.
This is also a feature of the non-commutative model (2a).
For g1 = g2 = g3 (the bare values) or for g1 = g3 = 0 or for
g2 = 0 = g1+ g3, we find that the model is asymptotically
free in the UV region. A representative example is shown
on the Fig. 8 when g1 = g2 = g3.
In [36, 37], the one-loop beta function for the non-

commutative Φ4 model has been computed. It was shown
that forΩ < 1, the flow is bounded contrary to the commu-
tative case where the theory is asymptotically free in the
IR. Note that this is not the case for the non-commutative
Gross–Neveu model. Moreover, at Ω = 1, the beta func-
tion of Φ4 vanishes at any order (asymptotically in the
UV region) [38]. In the present case, the limit Ω→ 1− is
singular as it can be seen from equation e.g. (31). This
singularity hides the actual behaviour of the β-functions
at Ω = 1 so that further investigations are needed to de-
termine whether or not vanishing β can also be observed
whenever Ω = 1, as it is the case for the Φ4 model. Finally
recall that for N = 1, the beta function of the equivalent
Thirring and Gross–Neveu models on R2 vanishes. This
feature is also lost on R2θ.
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